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Abstract. We investigate Wilczeck’s mutual fractional statistical model at the field-theoretical
level. The effective Hamiltonian for the particles is derived by the canonical procedure, whereas
the commutators of the anyonic excitations are proved to obey the Zamolodchikov–Faddeev
algebra. Cases leading to well known statistics as well as Laughlin’s wavefunction are discussed.

Fractional statistics plays an important role in planar physics. In two-dimensional space
identical particles can obey new kinds of statistics [1], interpolating between the normal
Bose and Fermi statistics. The general theory of fractional statistics was put forward by
Wilczeck and Zee [2] and Wu [3] who interpreted the theory in the path integral formalism
and related the theory to the braid group, while the connection with the Chern–Simons
theory was also proposed [4, 5]. Since then, a new subject, called anyonic physics, has
been widely developed, especially in the application to high-Tc superconductivity [6] and
the quantum Hall effect [7].

Recently Wilczeck has proposed a two-component anyonic model to describe
incompressible liquid quantized Hall states in situations where two distinct kinds of electrons
are relevant. The model can also overcome the violation of the discrete symmetriesP and
T in the original anyonic superconductivity theorem. In his paper [8] mutual statistics
between distinguished particles are introduced, which brings about some interesting results.

Multi-anyon quantum mechanics poses a challenging problem in theoretical physics. A
complete solution is far out of reach, and we can only understand some features from a
different point of view. One of them is to know the statistical character of the anyonic
excitation. In this work, based on the second quantized procedure, we diagonalize the
Hamiltonian for the two-component anyons, at the expense of the unusual commutation
relation of the field operators, which shares the Zamolodchikov–Faddeev algebra. Though
the method here is not developed for the first time, the result has never appeared in the
literature. The algebra of these operators reflects the statistical characters between the
anyonic excitations. Special values for the coupling constants leading to the Bose, Fermi
and q-deformed statistics are discussed and, meanwhile, the Laughlin’s wavefunction is
given.

Let us start from Wilczeck’s model [8],
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where

f
(a)
βγ = ∂βa(a)

γ − ∂γ a
(a)
β .

In equation (1) the indexi refers to a given particle,α, β, γ correspond to the three-
dimensional Lorentz coordinates,(a) represents the two kinds of particles, and all
coordinatesx or xi refers to two-dimensional vectors. The matrix

nab =
(

m1 n

n m2

)
describes the mutual statistics between the two kinds of particles and their self-statistics.

Since the time components of the gauge fields are Lagrangian multiples, one proceeds
by eliminating them by varying the Lagrangian with respect to them(δL/δa0 = 0). Then
one gets

e
∑

i
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i ) =

∑
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(b)
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(b)

1 ). (2)

Due to the two-dimensional identity∇(x/x2) = 2πδ(x), and choosing the Coulomb gauge
∇a(x) = 0, we can suppose the solution of (2) as
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wherek is the unit vector perpendicular to the plane.
The assumption turns out to be true when the parametersθij satisfy

eπ = m1θ11 + nθ21

eπ = m2θ22 + nθ12

0 = m1θ12 + nθ22

0 = m2θ21 + nθ11

(4)

whose solution reads

θ11 = m2eπ

m1m2 − n2

θ12 = −neπ

m1m2 − n2

θ21 = −neπ

m1m2 − n2

θ22 = m1eπ

m1m2 − n2
.

(5)

After the second quantization the effective Hamiltonian for the particles reads

H =
∑

a
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andθ(x−y) is the azimuthal angle of the vector fromy to x which is usually a multivalued
function. Since we are only interested in the effect of interchanging a pair of particles once,
[9], to see the statistics, the first sheet of the complex plane is concerned here, information
from higher ones can be trivially derived [10, 11].

Using the Jordan–Wigner transformation [9, 10, 12] we can turn the interacted
Hamiltonian into a free one being accompanied by the complicated field operators, or
anyonic operators. A study of these operators reveals the statistics of the anyonic excitation
mode. The transformation

9
(a)
F (x) = exp

(
− i

∑
b

θab

2π

∫
dz θ(x − z)9(b)†(z)9(b)(z)

)
9(a)(x) (8)

makes the Hamiltonian (6)

HF =
∑

a

∫
dx

1

2M
(−i∇9

(a)
F (x))†(−i∇9

(a)
F (x)). (9)

As a note, the free Hamiltonian does not mean a non-interacted system, because we will
deal with a complicated commutation algebra.

By a lengthy, but not difficult, calculation we can obtain the commutators of the anyonic
operators. For instance, from (8) and using the Baker–Cambell–Hausdorff formula, we
obtain

9
(1)
F (x)9

(1)†
F (y) = δxy − ei(θ11/2π)(θ(y−x)−θ(x−y))9

(1)†
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(1)
F (x). (10)

For simplicity, we define the ordering in two-dimensional space. Given two vectorsx,
y, and their componentsx1,2, y1,2, we define

x > y if x2 < y2

or x2 = y2, x1 < y1

x = y if x1 = y1, x2 = y2. (11)

Further, we define

sgn(x − y) =


1 x > y

0 x = y

−1 x < y.

(12)

With these definitions we get
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The same procedures for other commutators lead to the following relation in a compact
form,
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whereS
ij

kl is a 4× 4 matrix, whose non-zero elements are

S11
11(x − y) = −ei(θ11/2)sgn(x−y)

S21
12(x − y) = −ei(θ12/2)sgn(x−y)

S12
21(x − y) = −ei(θ21/2)sgn(x−y)

S22
22(x − y) = −ei(θ22/2)sgn(x−y). (15)
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It is easy to show that the matrixSij

kl satisfies the Yang–Baxter equation:

S
ij

kl (x − y)Slm
np (z − y)Skn

qr (z − x) = S
jm

kl (z − x)Sik
qn(z − y)Snl

rp(x − y). (16)

The algebras (14) and (16) originally appeared in the(1+1)-dimensional integrable field
theory [13–15], but it comes into the(2+1)-dimensional system, and the spectral parameter
in the quantum inverse scattering method is replaced here by the spacelike vector. It is not
clear how to interpret the physical consequences of the algebra, because our system is far
from the integrable system, but from it we can find some simple and solvable cases.

(1) We have two kinds of free fermions if

θij = 4π × integer. (17)

(2) One kind is a free fermion, the other aq-deformed excitation if

θ12 = θ21 = 4π × integer θ11 = 4π × integer θ22 6= 4π × integer. (18)

(3) We have two kinds ofq-deformed excitations, anticommutated to each other, if

θ12 = θ21 = 4π × integer θ11 6= 4π × integer θ22 6= 4π × integer. (19)

(4) We have no free excitation mode if

θ12 6= 4π × integer. (20)

Correspondingly, if we takeθij = 2π(2k + 1), k ∈ N , we have the boson orq-deformed
excitation mode.

Finally, introducing two sets of complex coordinates(zi, z̄i) and (wi, w̄i) for the two
kinds of particles, we can discuss the problem in the first quantized formalism. In parallel
to (8) and (9), we have a Hamiltonian without interaction

H ′
F =

∑
a=1,2

P 2
(a)

2M
. (21)

Correspondingly the wavefunction is multivalued. We can construct Laughlin’s
wavefunction [7]

|9〉′F =
∏

(zi − zj )
θ11/π (wi − wj)

θ22/π (zi − wj)
θ12/πf (zi, z̄i; wi, w̄i) (22)

wheref (zi, z̄i; wi, w̄i) is invariant under the interchanging between any two particles.
The following remarks are in order.
(1) If we consider the non-zero winding numbers of the field operators, the coefficients

of the exchange algebra will be changed, while the whole algebra keeps the same structure.
Actually, in this case, we have an ordered algebra, with the result in this paper as the lowest
sub-algebra.

(2) From the free Hamiltonian (9) and the complicated exchange algebra (14), we can
derive the Heisenberg equation for these field operators; however, it does not provide us
with further information about this system. A possible approach to quantize these braiding
fields has been suggested by Bożejko and Speicher [16], but it is still far from the physical
requirement.

(3) As an interesting result, we find that the statistical phases between the particles are
exactly related to the inverse matrix of the matrix of the statistical interaction. This has
also been pointed out in Wilczeck’s original paper [8], when he discussed the quasiholes.

(4) When we discuss the problem in the first quantization form, the particles look free,
but actually the interaction has entered into the statistical phaseθij . In this description, the
momentum operators have the usual meaning.
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